The quantum race is here, and Colorado is poised to lead the pack

One tech leader described Colorado as a "good petri dish for quantum to grow."

By Nikki Wentling  –  Reporter, Denver Business Journal

Frannie Matthews, the president and CEO of the Colorado Technology Association, was growing up in central Florida when the state developed its Space Coast, where Apollo 11 launched to the moon.

Just as Florida became synonymous with the U.S. space program in the 1960s, Matthews believes Colorado has the potential to emerge now as the national birthplace of quantum technology."We are in a unique position," Matthews said of Colorado. "We have academia that is really leading in quantum. We also have more national labs in Colorado than any other state outside of the Beltway. We've got several startups. That creates a good petri dish for quantum to grow."

Boulder is home to the quantum research centers JILA and the National Institute of Standards and Technology. As a growing number of researchers at those facilities studied quantum physics in 2022, state officials and innovators took steps to build Colorado into a nation-leading ecosystem for quantum computing.

This year saw the expansion of Atom Computing into Colorado and the growth of a Denver-based quantum startup, Infleqtion, which is working to commercialize quantum tech. Also this year, Colorado signed a partnership with Finland to cooperate in the advancement of quantum computing, and state leaders, including Matthews, traveled to the Scandinavian country to develop that relationship.

Progress is expected to continue in 2023 as the tempo of the quantum race quickens.

Infleqtion, formerly known as ColdQuanta, is eager to get to work. Flush with $110 million in venture capital, it is building out its product portfolio and racing to become one of the first companies to harness and sell quantum tech to commercial customers.

 "We believe that the quantum industry is at a turning point as it needs to move beyond research and focus on bringing practical, quantum-enabled solutions to the world," said Infleqtion CEO Scott Faris. "Quantum’s time is now and will require bold leadership to bring together the people, capital and ideas to drive the largest technological leap in human history."

Quantum computing promises to store more information and operate with more efficient algorithms than traditional computing, helping solve extremely complex tasks much faster than typically would be possible.

The technology is widely regarded as being in its infancy, but Infleqtion is seeking out ways to commercialize it with the development of atomic clocks, sensors, computing capability and algorithms.

Infleqtion's work is gaining national prominence. TIME magazine named ColdQuanta's Albert, a cloud-based quantum-matter machine, as one of the top inventions of 2022. The leaders of Infleqtion have also been granted a voice in the nation's capital, where they testified to Congress about the need to invest in a quantum workforce.

Multiple Infleqtion executives traveled to Washington, D.C., last month to lead presentations at the Quantum World Congress, a first-of-its-kind event that brought together researchers, developers, industry experts and elected officials to "accelerate the value of the growing quantum industry," according to event materials.The effort to grow Colorado's quantum ecosystem has the support of Gov. Jared Polis, who said this year that he wants the state to be at the forefront of the new industrial revolution that he thinks quantum will create.

"This really represents the next exponential improvement in computing power and efficiency," Polis said in September at the grand opening of Atom Computing in Boulder. "And it's really exciting that we are building that out and developing that right here in Colorado."

From Matthews' perspective, quantum technology has the potential to affect the world at a similar magnitude to the space race. If the U.S. — and Colorado, specifically — want a chance to lead in the quantum race, the time to act is now, she urged.

"When you look at what quantum will do, the way it will solve some big, hairy problems, it's very important that the United States invest in this innovation," Matthews said. "I hear a lot of people say, 'Well, quantum is not here yet.' But it never will be here if we're not investing in it now."

What are Optical Tweezer Arrays and How are They Used in Quantum Computing? Atom Computing’s Remy Notermans Explains.

In recent months, researchers from different institutions won major physics awards for advancing optical tweezer arrays and their use in quantum information sciences.

These announcements drew broader attention to optical tweezer arrays, even in the physics community.  At Atom Computing, however, they are always top-of-mind – optical tweezers are critical to our atomic array quantum computing technology. 

What are optical tweezer arrays and how and why do we use them in our quantum computers? Dr. Remy Notermans, who helped develop the optical tweezer array for Phoenix, our prototype system, answers these questions and more.

What are optical tweezer arrays?
A single optical tweezer is a beam of light used to capture atoms, molecules, cells, or nanoparticles, hold them in place or move them as needed. 

This is possible because light can attract or repulse a particle depending on the color (wavelength) of the light and the absorption properties (electronic energy level structure) of the particle.  By choosing the right wavelength, a particle will be drawn or attracted to the region with the highest intensity of light, trapped in what is known as a potential well (the energy landscape in which an atom wants to go to the lowest point.)

An optical tweezer is created when a laser beam is focused through a microscope objective lens. As the laser beam gets focused it forms into a "tweezer" capable of holding miniscule objects and manipulating them in its focal point. Think of the tractor beam from Star Trek.

To create an optical tweezer array, the laser beam is manipulated before it is focused through a microscope object lens to create a custom-made array of optical tweezers that can be tailored to specific needs – topology, dimensions, and orientation.

Are optical tweezer arrays a new technology?
Optical tweezers have been used by researchers in the fields of medicine, genetics, and chemistry for decades. In fact, Arthur Ashkin, “the father of optical tweezers,” was awarded the Nobel Prize in Physics in 2018. Ashkin’s work dates to 1970 when he first detected optical scattering and the effect of different levels of force on particles the size of microns.  He and some of his colleagues later observed a focused beam of light holding tiny particles in place – or optical tweezers.

More recent scientific work has expanded to actual arrays of optical tweezers, allowing for studying many particles simultaneously, biophysics research, and of course quantum information processing.

How does Atom Computing use optical tweezer arrays? What are the benefits?
Optical tweezers are critical to our atomic array quantum computing technology, which uses neutral atoms as qubits.  We reflect a laser beam off a spatial light modulator to create an array of many optical tweezers that each “trap” an individual qubit.  For example, Phoenix, our 100-qubit prototype quantum computer, has more than 200 optical tweezers created from a single laser. Each tweezer can be individually calibrated and optimized to ensure precise control. 

Optical tweezer arrays enable us to fit many qubits in a very small amount of space, which means that scaling the number of qubits by orders of magnitude does not significantly change the size of our quantum processing unit.  By integrating clever optical designs, we foresee a sustainable path toward atomic arrays that are large enough for fault-tolerant quantum computing.

In fact, optical tweezers inspired the Atom Computing logo.  If you turn our “A” logo upside down, it is a visual representation of an optical tweezer holding an atom in a potential well.

Are optical tweezer arrays used for other purposes?
Yes, optical tweezer arrays have been used extensively by researchers in other scientific fields. They have been used by scientists to trap living cells, viruses, bacteria, molecules, and even DNA strands so they can be studied.

Has the work of the New Horizons Physics Prize winners influenced Atom Computing’s approach? If so, how? 
We understand this is a fundamental part of the academic-industrial ecosystem, which is why Atom Computing is involved with many partnerships and funds academic research efforts that potentially help us propel our technology forward.  Combined with the knowledge and experience of our world-class engineering teams, we take these breakthroughs to the next level in terms of scalability, robustness, and systems integration.


What Developers Need to Know about our Atomic Array Quantum Computing Technology

Justin Ging, Chief Product Officer

If you are a developer working in the quantum computing space, you are familiar with or have run a circuit on a superconducting or trapped ion quantum computer. 

These two technologies were the early pioneers of the quantum hardware landscape and small versions of each have been available commercially for years.  A major challenge with these approaches is how to scale them to thousands or millions of qubits with error correction.

More recently, an alternative quantum computing technology with the potential to scale much quicker and easier has emerged - systems based on atomic arrays of neutral atoms.   These systems have inherent advantages, which have led to multiple teams developing them.  

But just as there is more than one way to cook an egg, there are different approaches to building quantum computers from atomic arrays.

At Atom Computing, we are pioneering an approach to deliver highly scalable gate-based quantum computing systems with large numbers of qubits, long coherence times, and high fidelities. 

Here are some key advantages of our atomic array quantum computing technology:

  1. Long coherence times.  Most quantum hardware companies measure coherence in units of milliseconds.  We measure it in seconds. The Atom team recently set a record for the longest coherence time in a quantum computer with Phoenix, our first-generation 100-qubit system. Phoenix demonstrated qubit coherence times of 21 seconds.  The longer qubits maintain their quantum state, the better.  Developers can run deeper circuits for more complex calculations and there is more time to detect and correct errors during computation.  How do we create such long-lived qubits? Weuse alkaline earth atoms for our qubits. These atoms do not have an electrical charge, thus they are “neutral.”  Each atom is identical, which helps with quality control, and are highly immune to environmental noise.
  2. Flexible, gate-based architecture.  Atom Computing is focused on developing a flexible and agile platform for quantum computing by supporting a universal quantum gate-set that can be programmed using standard industry quantum development platforms.  This gate-based approach allows developers to create a wide range of quantum algorithms for many use cases.  Our qubit connectivity uses Rydberg interactions where the atoms are excited to a highly energized level using laser pulses causing their electrons to orbit the nucleus at a greater distance than their ground state to interact with nearby atoms.
  3. Designed to scale.  Neutral atoms can be tightly packed into a computational array of qubits, making the quantum processor core just fractions of a cubic millimeter.  Lasers hold the atomic qubits in position in this tight array and manipulate their quantum states wirelessly with pulses of light to perform computations. This arrangement of individually trapped atoms, spaced only microns apart, allows for massive scalability, as it is possible to expand the qubit array size without substantially changing the overall footprint of the system.  For example, at a 4-micron pitch between each atom and arranged in a 3D array, a million qubits could fit in less than 1/10th of a cubic millimeter volume.

Developers looking for gate-based quantum computers with large numbers of qubits with long coherence times, should be looking to partner with Atom Computing.  We are working with private beta partners to facilitate their research on our platforms. Have questions about partnering? Contact us.

Silicon Valley Up-Start, Atom Computing, Chooses Colorado to Build Next-Generation Quantum Computers

September 28, 2022 — Boulder, CO — Atom Computing today announced the opening of its new research and development facility in Boulder during a ceremony attended by industry and academic partners, officials from federal, state, and local government, and representatives from Colorado’s Congressional delegation.

The new facility is Atom’s largest to date and will house future generations of its highly scalable quantum computers, which use atomic arrays of optically-trapped neutral atoms. The company opened its first office, which also serves as its global headquarters, in Berkeley, California in 2018.

Governor Jared Polis called the Boulder facility a significant and important investment in Colorado and evidence the state is emerging as the preeminent hub for quantum computing innovation in the U.S. and globally.

“We are excited to welcome Atom Computing to Boulder, which is already one of the world’s most booming centers for the quantum computing sector,” Polis said. “The addition of Atom Computing helps further position Colorado as an economic leader for the next big wave of technology development and will create more good-paying jobs for Coloradans.”

The Boulder facility represents an important milestone for Atom Computing, which raised $60 million through a Series B earlier this year to build its second-generation systems. The company’s 100-qubit prototype system, Phoenix, is housed in Berkeley and recently set an industry record for coherence time.

“Leading researchers and companies are choosing to partner with Atom Computing to develop quantum-enabled solutions because our atomic arrays have the potential to scale larger and faster than other qubit technologies,” said Rob Hays, CEO of Atom Computing.

Hays said the company chose Colorado because of the quantum expertise and top talent in the area and plans to expand its presence in the state. 

“We expect to invest $100 million in Colorado over the next three years as we develop our roadmap and hire more employees to support those efforts,” he said.

Ben Bloom, Atom Computing’s founder and CTO, said the company’s strong ties to Colorado also contributed to its decision to build a facility in Boulder.

“Many of our team members, myself included, have connections with local universities,” said Bloom, who earned a Ph.D. from University of Colorado-Boulder where he helped renowned physicist, Dr. Jun Ye, build one of the world’s most accurate atomic clocks. “We are committed to Colorado.”

Jun Ye, who currently serves as Atom’s Scientific Advisor, called the new facility an important addition to the quantum ecosystem.

"It is extremely gratifying to see our recent CU graduates emerge as the early trailblazers of the rapidly growing quantum industry,” said Ye, a physics professor at CU Boulder. “This creates a powerful ecosystem for the best science and technology to develop side-by-side, providing outstanding opportunities for Colorado students to lead the next wave of innovations in quantum research and the market.”

To learn more about Atom Computing visit: https://atom-computing.com.

###

About Atom Computing

Atom Computing is building scalable quantum computers with atomic arrays of optically-trapped neutral atoms, empowering researchers and companies to achieve unprecedented breakthroughs. Learn more at atom-computing.com, and follow our journey on LinkedIn and Twitter.

Atom Computing Sets a World-Record Coherence Time for Neutral Atom Qubits | FORBES​

Following a number of accomplishments in 2021, last week Atom Computing announced it had set a qubit coherence time record that was longer than any other commercial quantum platform.